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N, N2, N, are singular.
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A property exemplifies compactness if approximations of a possible
object imply the existence of the object, e.g. the tree property.
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N, N2, N, are singular.

When we talk about singulars, we are often interested in their
successors, e.g. Ny, 11.

A property exemplifies compactness if approximations of a possible
object imply the existence of the object, e.g. the tree property.

Compact properties tend to follow from large cardinals, either
directly or consistency-wise.

A property is non-compact if you have approximations of something
that cannot exist, e.g. an Aronszajn tree or [,,.

Non-compactness is a key property of L and other inner models.
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Theorem (Easton)
The continuum function k — 2% on regular cardinals is constrained only
by:

» A<k = 2* < 2% (monotonicity)
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Compact Behavior of Singular Cardinals

Theorem (Easton)
The continuum function k — 2% on regular cardinals is constrained only
by:

» A<k = 2* < 2% (monotonicity)

» cf(2%) > k (Kénig's Theorem).

Theorem (Silver)

GCH cannot fail for the first time at a singular of uncountable cofinality.

Theorem (Magidor)

Relative to a supercompact cardinal, it is consistent that GCH holds
below R, but 2%« > R 1.

Theorem (Shelah)
If X, is a strong limit then 2%« < N, -
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Defining Stationary Reflection

Definition
If x is a cardinal and S C k a stationary set, then S reflects at « if
cf(a) > w and SN« is stationary. S reflects if it reflects at some o < k.

Definition
The stationary reflection property SR(S) holds if every stationary subset
of S reflects.

Examples

Jensen In L, SR(k) holds if any only if  is weakly compact.
Harr.-Sh. Con(SR(Xz N cof(w))) <= Con(3 a Mahlo cardinal).

Sargsyan Con(X,, a strong limit A SR(R,41)) =
Con(3 a Woodin cardinal with a strong cardinal below it).

Solovay? k supercompact = SR(A N cof(< k)) for all regular A > k.
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“Eastonizing” Stationary Reflection for Fixed Cofinality

Proposition

> SR(k N cof(X,)) holds vacuously if k < R,;
> SR(Rpp1 Ncof(R,)) fails;
» SR(ANcof(R,)) < SR(cf AN cof(X,)).

Theorem (Friedman-L.)

Suppose x is a supercompact cardinal in V' such that GCH holds above
X. Let F be a 2-valued function on the class of regular cardinals > x.
Then there is a forcing extension W D V' in which:

> X = Nn+2 ;

» cofinalities and GCH are preserved above x;

> for all regular k € W such that k > R, 2, there is a non-reflecting
stationary subset of k N cof(X,) if and only if F(k) = 1.
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A Snappier Corollary

Remark
The successors of singulars present the most difficult cases.

Corollary (Friedman-L.)

Relative to the consistency of a supercompact cardinal, it is consistent
that there is a model in which for all regular k > R,12, SR(x N cof(R,))
holds if and only if (k) holds where p(r) could be any of the following:
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A Snappier Corollary

Remark
The successors of singulars present the most difficult cases.

Corollary (Friedman-L.)

Relative to the consistency of a supercompact cardinal, it is consistent
that there is a model in which for all regular k > R,12, SR(x N cof(R,))
holds if and only if (k) holds where p(r) could be any of the following:
K is the successor of a regular cardinal;

K is the successor of a singular cardinal;

K IS inaccessible;

K IS not inaccessible;

k= Npi17,

K # N7

vV v v v v Yy
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Further Directions for Stationary Reflection

Question
Can we get the same result for SR(k N cof (N, 41)) 7

Conjecture

Probably, but then we need to force approachability “manually” and then
the forcing will be even more complicated.

Question

Suppose that F is a function on a class of regular cardinals > X, to itself
such that F(rk)t < k for all k € dom(F). Is it possible to obtain a model
such that SR(k N cof(0)) holds precisely when F(k) =67

Conjecture
Absolutely not.
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We say that J,; holds if there is a sequence (C, : a € lim(x™)) such that
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We say that J,; holds if there is a sequence (C, : a € lim(x™)) such that
for all a € lim(x™):
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» C, has order-type < k;
» Vi elimC,, CoN B = Cs.

Fact
Given a O,-sequence, there is no club D C k™ such that
Va €limD, DNa = C,. In other words, the sequence has no thread.

Definition
We say that O (“weak square”) holds if there is a sequence
(Cq : a € lim(k™)) such that for all a € lim(k™):
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L, and LI
Definition
We say that J,; holds if there is a sequence (C, : a € lim(x™)) such that
for all a € lim(x™):
» C,isaclubin ¢
» C, has order-type < k;
» Vi elimC,, CoN B = Cs.

Fact
Given a O,-sequence, there is no club D C k™ such that
Va €limD, DNa = C,. In other words, the sequence has no thread.

Definition
We say that O (“weak square”) holds if there is a sequence
(Cq : a € lim(k™)) such that for all a € lim(k™):

> [Cal <k

» for all C € C,, Cis a club in « of order-type < k;
forall C€Cy,BelimC, CNBeCg.

v
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Scales

Definition
If f,g: 7+ ON, then f <* g if there is a j < 7 such that
i>j = (i) < gli).
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If f,g: 7+ ON, then f <* g if there is a j < 7 such that
i>j = f(i) <g(i).
If \'is a singular cardinal and (\; : i < cf ) is a sequence of regular
cardinals converging to A, a scale on )\ is a sequence of functions
(fo : @ < A1) such that:

» The fy'sarein [[; a1 Ni
» The f,'s are <*-increasing;

Maxwell Levine Universitdt Wien



The Situation with Square (joint w/ Sy-David Friedman and Dima Sinapova) 12/21

Scales

Definition
If f,g: 7+ ON, then f <* g if there is a j < 7 such that
i>j = f(i) <g(i).
If X is a singular cardinal and (\; : i < cf \) is a sequence of regular
cardinals converging to A, a scale on )\ is a sequence of functions
(fo : @ < A1) such that:

» The fy'sarein [[; a1 Ni
» The f,'s are <*-increasing;
» The sequence is cofinal in the product []; . A; with respect to <*.
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Scales

Definition
If f,g: 7+ ON, then f <* g if there is a j < 7 such that
i>j = f(i) <g(i).
If X is a singular cardinal and (\; : i < cf \) is a sequence of regular

cardinals converging to A, a scale on )\ is a sequence of functions
(fo : @ < A1) such that:

» The fy'sarein [[; a1 Ni

» The f,'s are <*-increasing;

» The sequence is cofinal in the product []; . A; with respect to <*.

Theorem (Shelah)
If X is a singular cardinal then there is a product of regular cardinals
[1jccen Ai with sup; ¢\ Ai = A that carries a scale.
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Let f = (f, : @« < AT) be a scale on a product (\; : i < cf \).

» A function h is an exact upper bound of (fg : B < ) if g <* h
implies that there is some 3 < « such that g <* f3.
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implies that there is some 3 < « such that g <* f3.

» We say that a is a good point if (fg : § < a) has an exact upper
bound h such that cf(h(i)) = cf(«) for large i.
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Connections Between Squares and Scales

Definition
Let f = (f, : @« < AT) be a scale on a product (\; : i < cf \).
» A function h is an exact upper bound of (fg : B < ) if g <* h
implies that there is some 3 < « such that g <* f3.

» We say that a is a good point if (fg : § < a) has an exact upper
bound h such that cf(h(i)) = cf(«) for large i.

» We say that fis good scale if there are club-many good points in
AT of cofinality > cf \.

Fact
If X is singular, then LI implies that all scales on A are good.
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Connections Between Squares and Scales

Definition
Let f = (f, : @« < AT) be a scale on a product (\; : i < cf \).
» A function h is an exact upper bound of (fg : B < ) if g <* h
implies that there is some 3 < « such that g <* f3.

» We say that a is a good point if (fg : § < a) has an exact upper
bound h such that cf(h(i)) = cf(«) for large i.

» We say that fis good scale if there are club-many good points in
AT of cofinality > cf \.

Fact
If X is singular, then LI implies that all scales on A are good.

Fact
If k is supercompact and cf A\ < k < A, then every scale on \ is bad.
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Non-Compactness of [, at N,

Theorem (Cummings, Foreman, and Magidor / Krueger)

Assuming the consistency of a supercompact cardinal, there is a model
where Oy, holds for all n < w and:
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Non-Compactness of [, at N,

Theorem (Cummings, Foreman, and Magidor / Krueger)

Assuming the consistency of a supercompact cardinal, there is a model
where Oy, holds for all n < w and:

CFM Oy, fails.

K D§w fails, i.e. there is no N, 1-special Aronszajn tree. In fact, all
scales on N, are bad.
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A Weak Non-Compactness Result

Theorem (Friedman, L., Sinapova)

Assuming the consistency of a supercompact cardinal, there is a model in
which:

> ) is singular of uncountable cofinality;

> there is a nonstationary set A C X such that Oy holds for all § € A;
» [, fails;
>

more precisely, there is a bad scale on \.
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Proof of the Weak Non-Compactness Result
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Proof of the Weak Non-Compactness Result

» Start with a « that is indestructibly supercompact under
k-directed-closed forcings.
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» Start with a « that is indestructibly supercompact under
k-directed-closed forcings.

» There is a standard forcing Ss for adding a (s-sequence. Force with
a product S := [[5.4Ss where A C X\ & is non-stationary. S is
cofinality-preserving.
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» There is a standard forcing Ss for adding a (s-sequence. Force with
a product S := [[5.4Ss where A C X\ & is non-stationary. S is
cofinality-preserving.

> There is also a standard forcing Ts ¢ with £ < § regular defined in an
extension V[Ss] such that S5 * T is (-directed closed.
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Proof of the Weak Non-Compactness Result

» Start with a « that is indestructibly supercompact under
k-directed-closed forcings.

» There is a standard forcing Ss for adding a (s-sequence. Force with
a product S := [[5.4Ss where A C X\ & is non-stationary. S is
cofinality-preserving.

> There is also a standard forcing Ts ¢ with £ < § regular defined in an
extension V[Ss] such that S5 * T is (-directed closed.

> Ais avoided by a club (A\¢ : &€ < cf ). There is a function F with
domain A such that for all § € A, F(d) is a regular cardinal < ¢ and
such that F(§) > )\2 if § € A\)\z.
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Proof of the Weak Non-Compactness Result

>

Maxwell Levine

Start with a k that is indestructibly supercompact under
k-directed-closed forcings.

There is a standard forcing S5 for adding a (s-sequence. Force with
a product S := [[5.4Ss where A C X\ & is non-stationary. S is
cofinality-preserving.

There is also a standard forcing Ts ¢ with £ < § regular defined in an
extension V[Ss] such that S5 * T is (-directed closed.

A is avoided by a club (A\¢ : £ < cf A). There is a function F with
domain A such that for all § € A, F(d) is a regular cardinal < ¢ and
such that F(§) > )\2 if § € A\)\z.

Use this idea to (carefully) embed S into a forcing Q which is
r-directed closed and which factors as product of a A¢-sized forcing
with a /\g—distributive forcing for all £ < cf A, which implies that it
preserves A7
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Proof of the Weak Non-Compactness Result

>

Maxwell Levine

Start with a k that is indestructibly supercompact under
k-directed-closed forcings.

There is a standard forcing S5 for adding a (s-sequence. Force with
a product S := [[5.4Ss where A C X\ & is non-stationary. S is
cofinality-preserving.

There is also a standard forcing Ts ¢ with £ < § regular defined in an
extension V[Ss] such that S5 * T is (-directed closed.

A is avoided by a club (A\¢ : £ < cf A). There is a function F with
domain A such that for all § € A, F(d) is a regular cardinal < ¢ and
such that F(§) > )\g if § € A\)\z.

Use this idea to (carefully) embed S into a forcing Q which is
r-directed closed and which factors as product of a A¢-sized forcing
with a /\g—distributive forcing for all £ < cf A, which implies that it
preserves A7

k remains supercompact in V[Q], which means that every scale on

At is bad. Because Q/S preserves AT, this implies that there must
have been a bad scale in V[S], hence OJ, fails in V[S].
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Weak Silver's Theorem for Square

Theorem (Friedman, L., Sinapova)
Suppose:

> X is a singular strong limit cardinal of uncountable cofinality (i,
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Weak Silver's Theorem for Square

Theorem (Friedman, L., Sinapova)

Suppose:
> X is a singular strong limit cardinal of uncountable cofinality (i,
» s holds for stationarily-many § < \;

> every scale on \ is good.

Then there is a partial C\-sequence on \™ N cof (> ),
i.e. there is some Z D lim(A") Ncof(> p) and a sequence (C, : v € Z)
such that for all a € Z:

» C, Cwisaclubin «;
> the order-type of C, is < \;
» forall elimC,, €5 and C, NS =Cgs.
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Proof of WSTTS: Defining the Partial Square
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Proof of WSTTS: Defining the Partial Square

» We have a singular A with cofinality x> w such that
{6 < X\ : s holds} is stationary. Let (A; : /i < u) be a club in A.
Then S := {i < p : Oy, holds} is stationary in p.
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Proof of WSTTS: Defining the Partial Square

» We have a singular A with cofinality x> w such that
{6 < X\ : s holds} is stationary. Let (A; : /i < u) be a club in A.
Then S := {i < p : Oy, holds} is stationary in p.

» Using the fact that [ )\f carries a good scale, we can argue that
there is a continuous good scale fl Namely, a scale (f, : @ < A™)
such that:

> If cf o < pand A C « is unbounded, then [i = supge f3(1)] = fa.

> If cf o > p, then for all unbounded A C «, there is some A’ C A
unbounded such that [i + supgecar f3(i)] =" fa.
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Proof of WSTTS: Defining the Partial Square

» We have a singular A with cofinality x> w such that
{6 < X\ : s holds} is stationary. Let (A; : /i < u) be a club in A.
Then S := {i < p : Oy, holds} is stationary in p.

» Using the fact that [ )\f carries a good scale, we can argue that
there is a continuous good scale fl Namely, a scale (f, : @ < A™)
such that:

> If cf o < pand A C « is unbounded, then [i = supge f3(1)] = fa.
> If cf o > p, then for all unbounded A C «, there is some A’ C A
unbounded such that [i + supgecar f3(i)] =" fa.
> Let C; = <C§’ : € < \T) witness O, for all i € S. For each
a € AT Ncof(> p), let:

Xo =B <a:{i<p:f(i)elim C;'a(,-)} C S\ j, some j).
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Proof of WSTTS: Defining the Partial Square

» We have a singular A with cofinality x> w such that
{0 < X : 0O holds} is stationary. Let (\; : i < u) be a club in A.
Then S := {i < p : Oy, holds} is stationary in p.

» Using the fact that [ )\f carries a good scale, we can argue that

there is a continuous good scale fl Namely, a scale (f, : @ < A™)
such that:

> If cf o < pand A C « is unbounded, then [i = supge f3(1)] = fa.
> If cf o > p, then for all unbounded A C «, there is some A’ C A
unbounded such that [i + supgecar f3(i)] =" fa.

> Let C; = <C§’ : € < \T) witness O, for all i € S. For each
a € AT Ncof(> p), let:

Xo =B <a:{i<p:f(i)elim C;'a(,-)} C S\ j, some j).

» The X,'s are closed under sequences of length # .
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Proof of WSTTS: Defining the Partial Square

>

Maxwell Levine

We have a singular A with cofinality ;1 > w such that

{0 < X : 0O holds} is stationary. Let (\; : i < u) be a club in A.
Then S := {i < p : Oy, holds} is stationary in p.

Using the fact that [ ], )\f carries a good scale, we can argue that

there is a continuous good scale fl Namely, a scale (f, : @ < A™)
such that:

> If cf o < pand A C « is unbounded, then [i = supge f3(1)] = fa.
> If cf o > p, then for all unbounded A C «, there is some A’ C A
unbounded such that [i + supgecar f3(i)] =" fa.

Let € = <C§’ : € < \T) witness O, for all i € S. For each
a € AT Ncof(> p), let:

Xo =B <a:{i<p:f(i)elim C;'a(,-)} C S\ j, some j).

The X, 's are closed under sequences of length # p.

C,, will be the closure of X, in «a.

8/21
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Proof of WSTSS: Verifying the Properties of Partial Square
> Xo = (B<a:{i<p:fz(i) elimCi )} C S\ j, some j)
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> Xo = (B<a:{i<p:fz(i) elimCi )} C S\ j, some j)
» Coherence of the X,,'s follows (with an argument) from closure.

Maxwell Levine Universitat Wien



The Situation with Square (joint w/ Sy-David Friedman and Dima Sinapova) 19/21

Proof of WSTSS: Verifying the Properties of Partial Square
> Xo = (B<a:{i<p:fz(i) elimCi )} C S\ j, some j)
» Coherence of the X,,'s follows (with an argument) from closure.
» Unboundedness of the X,'s follows from an interleaving argument:
We define (v, : n <w) Ca, (g, :n<w) C [, A,
(o n < w) C p such that given v, g,41(7) = min C,ﬁa(i) \ f,,(i) and
g <* f,,., (using the exact upper bound property). Then if
V" =sup,«,, Yo and j* = sup, ., jn, j* witnesses that v* € X,,.
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Proof of WSTTS: Verifying the Properties of Partial Square
Xo = (B <a:{i<p:fa(i)elimCf } CS\j, some )

Coherence of the X,,'s follows (with an argument) from closure.
Unboundedness of the X, 's follows from an interleaving argument:

We define (v, : n <w) Ca, (g, :n<w) C [, A,

(o n < w) C p such that given v, g,41(7) = min C,ﬁa(i) \ f,,(i) and

g <* f,,., (using the exact upper bound property). Then if

V" =sup,«,, Yo and j* = sup, ., jn, j* witnesses that v* € X,,.

To show that the X, 's have order-type < A: Assume without loss of
generality that the square sequences <CE’ 1 < u) were defined so

that ot Cg <\ forall € < A, i < u. Forevery i €1imS, there is
some j < i such that ot C¢ ;y < ;. So there is a stationary T C S
and some j such that for all i € T, ot C;a(,.) <AjIf B e Xy, let
gs(i) = ot Cf ;) N f3(i) for all i such that f3(i) € Cf ;) and 0
otherwise. If 3,8’ € X, and 8 < ', then gz and gp: are distinct
because f; eventually dominates f5. Furthermore, {gs : 3 € X,} has
size 5" < X since we assumed \ is a strong limit, which shows that
Xp has size less than .

v

vV Yy

v
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Conjectures Not Necessarily Believed by Collaborators
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Conjectures Not Necessarily Believed by Collaborators

Conjecture

Silver's Theorem for Square is false. Rather, it is consistent up to large
cardinals that Oy, holds for all § < wy, while DNM fails.
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Conjectures Not Necessarily Believed by Collaborators

Conjecture

Silver's Theorem for Square is false. Rather, it is consistent up to large
cardinals that Oy, holds for all § < wy, while DNM fails.

Conjecture

Some strong-ish form of Silver's Theorem for Weak Square is true. If \ is
a singular strong limit of uncountable cofinality and L5 holds for all
0 < A, then 0% holds as well.
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Dikuji!
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