Compactness and Incompactness on Singular Cardinals

Maxwell Levine

Universität Wien

Winter School in Abstract Analysis 2020 section Set Theory & Topology

January 30, 2020

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Section 1

What Compactness Means for Singular Cardinals

Universität Wien

<ロ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ Universität Wien

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ .

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ . The smallest such λ is the *cofinality* of κ and is denoted cf κ .

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ . The smallest such λ is the *cofinality* of κ and is denoted cf κ .

・ロト ・四ト ・ヨト ・ヨト

Universität Wien

 \triangleright \aleph_0 , \aleph_1 are not singular, nor are inaccessible cardinals.

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ . The smallest such λ is the *cofinality* of κ and is denoted cf κ .

- ▶ \aleph_0 , \aleph_1 are not singular, nor are inaccessible cardinals.
- ▶ \aleph_{ω} , \aleph_{ω^2} , \aleph_{ω_1} are singular.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ . The smallest such λ is the *cofinality* of κ and is denoted cf κ .

- ▶ \aleph_0 , \aleph_1 are not singular, nor are inaccessible cardinals.
- ▶ \aleph_{ω} , \aleph_{ω^2} , \aleph_{ω_1} are singular.
- ▶ When we talk about singulars, we are often interested in their successors, e.g. $\aleph_{\omega+1}$.

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ . The smallest such λ is the *cofinality* of κ and is denoted cf κ .

- ▶ \aleph_0 , \aleph_1 are not singular, nor are inaccessible cardinals.
- ▶ \aleph_{ω} , \aleph_{ω^2} , \aleph_{ω_1} are singular.
- ▶ When we talk about singulars, we are often interested in their successors, e.g. $\aleph_{\omega+1}$.
- A property exemplifies compactness if approximations of a possible object imply the existence of the object, e.g. the tree property.

◆□> ◆聞> ◆臣> ◆臣> □ 臣

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ . The smallest such λ is the *cofinality* of κ and is denoted cf κ .

- ▶ \aleph_0 , \aleph_1 are not singular, nor are inaccessible cardinals.
- ▶ \aleph_{ω} , \aleph_{ω^2} , \aleph_{ω_1} are singular.
- ▶ When we talk about singulars, we are often interested in their successors, e.g. $\aleph_{\omega+1}$.
- A property exemplifies compactness if approximations of a possible object imply the existence of the object, e.g. the tree property.

Universität Wien

 Compact properties tend to follow from large cardinals, either directly or consistency-wise.

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ . The smallest such λ is the *cofinality* of κ and is denoted cf κ .

- ▶ \aleph_0 , \aleph_1 are not singular, nor are inaccessible cardinals.
- ▶ \aleph_{ω} , \aleph_{ω^2} , \aleph_{ω_1} are singular.
- ▶ When we talk about singulars, we are often interested in their successors, e.g. $\aleph_{\omega+1}$.
- A property exemplifies compactness if approximations of a possible object imply the existence of the object, e.g. the tree property.
- Compact properties tend to follow from large cardinals, either directly or consistency-wise.
- A property is non-compact if you have approximations of something that cannot exist, e.g. an Aronszajn tree or □_κ.

Definition

A cardinal κ is *singular* if there is some $\lambda < \kappa$ and some function $f : \lambda \to \kappa$ unbounded in κ . The smallest such λ is the *cofinality* of κ and is denoted cf κ .

- ▶ \aleph_0 , \aleph_1 are not singular, nor are inaccessible cardinals.
- \aleph_{ω} , \aleph_{ω^2} , \aleph_{ω_1} are singular.
- ▶ When we talk about singulars, we are often interested in their successors, e.g. $\aleph_{\omega+1}$.
- A property exemplifies compactness if approximations of a possible object imply the existence of the object, e.g. the tree property.
- Compact properties tend to follow from large cardinals, either directly or consistency-wise.
- A property is non-compact if you have approximations of something that cannot exist, e.g. an Aronszajn tree or □_κ.
- ▶ Non-compactness is a key property of *L* and other inner models.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ▶ < □ ♪ < □ ▶ < □ ♪ < □ ↓ < □ ↓ </p>

Theorem (Easton)

The continuum function $\kappa \mapsto 2^{\kappa}$ on regular cardinals is constrained only by:

- $\lambda \leq \kappa \implies 2^{\lambda} \leq 2^{\kappa}$ (monotonicity)
- $cf(2^{\kappa}) > \kappa$ (König's Theorem).

ヘロン 人間 とくほど くほど

Theorem (Easton)

The continuum function $\kappa \mapsto 2^{\kappa}$ on regular cardinals is constrained only by:

- $\lambda \leq \kappa \implies 2^{\lambda} \leq 2^{\kappa}$ (monotonicity)
- $cf(2^{\kappa}) > \kappa$ (König's Theorem).

Theorem (Silver)

GCH cannot fail for the first time at a singular of uncountable cofinality.

Universität Wien

・ロト ・聞 ト ・ヨト ・ヨト

Theorem (Easton)

The continuum function $\kappa \mapsto 2^{\kappa}$ on regular cardinals is constrained only by:

- $\lambda \leq \kappa \implies 2^{\lambda} \leq 2^{\kappa}$ (monotonicity)
- $cf(2^{\kappa}) > \kappa$ (König's Theorem).

Theorem (Silver)

GCH cannot fail for the first time at a singular of uncountable cofinality.

Theorem (Magidor)

Relative to a supercompact cardinal, it is consistent that GCH holds below \aleph_{ω} but $2^{\aleph_{\omega}} > \aleph_{\omega+1}$.

◆□> ◆聞> ◆臣> ◆臣> □ 臣

Theorem (Easton)

The continuum function $\kappa \mapsto 2^{\kappa}$ on regular cardinals is constrained only by:

- $\lambda \leq \kappa \implies 2^{\lambda} \leq 2^{\kappa}$ (monotonicity)
- $cf(2^{\kappa}) > \kappa$ (König's Theorem).

Theorem (Silver)

GCH cannot fail for the first time at a singular of uncountable cofinality.

Theorem (Magidor)

Relative to a supercompact cardinal, it is consistent that GCH holds below \aleph_{ω} but $2^{\aleph_{\omega}} > \aleph_{\omega+1}$.

◆□> ◆聞> ◆臣> ◆臣> □ 臣

Universität Wien

Theorem (Shelah)

If \aleph_{ω} is a strong limit then $2^{\aleph_{\omega}} < \aleph_{\omega_4}$.

5/21

Section 2

The Non-Compactness of Stationary Reflection (joint w/ Sy-David Friedman)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

6/21

Defining Stationary Reflection

Defining Stationary Reflection

Definition

If κ is a cardinal and $S \subseteq \kappa$ a stationary set, then S reflects at α if $cf(\alpha) > \omega$ and $S \cap \alpha$ is stationary. S reflects if it reflects at some $\alpha < \kappa$.

6/21

Defining Stationary Reflection

Definition

If κ is a cardinal and $S \subseteq \kappa$ a stationary set, then S reflects at α if $cf(\alpha) > \omega$ and $S \cap \alpha$ is stationary. S reflects if it reflects at some $\alpha < \kappa$.

Definition

The stationary reflection property SR(S) holds if every stationary subset of S reflects.

6/21

Defining Stationary Reflection

Definition

If κ is a cardinal and $S \subseteq \kappa$ a stationary set, then S reflects at α if $cf(\alpha) > \omega$ and $S \cap \alpha$ is stationary. S reflects if it reflects at some $\alpha < \kappa$.

Definition

The stationary reflection property SR(S) holds if every stationary subset of S reflects.

Examples

Maxwell Levine

< □ > < 部 > < 書 > < 書 > ■ の Q (~ Universität Wien

Proposition

▶ $SR(\kappa \cap cof(\aleph_n))$ holds vacuously if $\kappa \leq \aleph_n$;

Proposition

- ▶ $SR(\kappa \cap cof(\aleph_n))$ holds vacuously if $\kappa \leq \aleph_n$;
- ▶ SR($\aleph_{n+1} \cap cof(\aleph_n)$) fails;

Proposition

- ▶ $SR(\kappa \cap cof(\aleph_n))$ holds vacuously if $\kappa \leq \aleph_n$;
- SR($\aleph_{n+1} \cap \operatorname{cof}(\aleph_n)$) fails;
- ▶ $\mathsf{SR}(\lambda \cap \mathsf{cof}(\aleph_n)) \iff \mathsf{SR}(\mathsf{cf} \lambda \cap \mathsf{cof}(\aleph_n)).$

イロン イヨン イヨン イヨン

Proposition

- $SR(\kappa \cap cof(\aleph_n))$ holds vacuously if $\kappa \leq \aleph_n$;
- ▶ $SR(\aleph_{n+1} \cap cof(\aleph_n))$ fails;
- ▶ $\mathsf{SR}(\lambda \cap \mathsf{cof}(\aleph_n)) \iff \mathsf{SR}(\mathsf{cf} \lambda \cap \mathsf{cof}(\aleph_n)).$

Theorem (Friedman-L.)

Suppose χ is a supercompact cardinal in V such that GCH holds above χ . Let F be a 2-valued function on the class of regular cardinals $\geq \chi$. Then there is a forcing extension $W \supset V$ in which:

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

- $SR(\kappa \cap cof(\aleph_n))$ holds vacuously if $\kappa \leq \aleph_n$;
- ▶ $SR(\aleph_{n+1} \cap cof(\aleph_n))$ fails;
- ▶ $\mathsf{SR}(\lambda \cap \mathsf{cof}(\aleph_n)) \iff \mathsf{SR}(\mathsf{cf} \lambda \cap \mathsf{cof}(\aleph_n)).$

Theorem (Friedman-L.)

Suppose χ is a supercompact cardinal in V such that GCH holds above χ . Let F be a 2-valued function on the class of regular cardinals $\geq \chi$. Then there is a forcing extension $W \supset V$ in which:

・ロト ・聞 ト ・ヨト ・ヨト

Universität Wien

•
$$\chi = \aleph_{n+2};$$

Proposition

- $SR(\kappa \cap cof(\aleph_n))$ holds vacuously if $\kappa \leq \aleph_n$;
- ▶ $SR(\aleph_{n+1} \cap cof(\aleph_n))$ fails;
- ▶ $\mathsf{SR}(\lambda \cap \mathsf{cof}(\aleph_n)) \iff \mathsf{SR}(\mathsf{cf} \lambda \cap \mathsf{cof}(\aleph_n)).$

Theorem (Friedman-L.)

Suppose χ is a supercompact cardinal in V such that GCH holds above χ . Let F be a 2-valued function on the class of regular cardinals $\geq \chi$. Then there is a forcing extension $W \supset V$ in which:

◆□> ◆聞> ◆臣> ◆臣> □ 臣

Universität Wien

• $\chi = \aleph_{n+2};$

• cofinalities and GCH are preserved above χ ;

Proposition

- $SR(\kappa \cap cof(\aleph_n))$ holds vacuously if $\kappa \leq \aleph_n$;
- SR($\aleph_{n+1} \cap \operatorname{cof}(\aleph_n)$) fails;
- ▶ $\mathsf{SR}(\lambda \cap \mathsf{cof}(\aleph_n)) \iff \mathsf{SR}(\mathsf{cf} \lambda \cap \mathsf{cof}(\aleph_n)).$

Theorem (Friedman-L.)

Suppose χ is a supercompact cardinal in V such that GCH holds above χ . Let F be a 2-valued function on the class of regular cardinals $\geq \chi$. Then there is a forcing extension $W \supset V$ in which:

• $\chi = \aleph_{n+2};$

- cofinalities and GCH are preserved above χ ;
- For all regular κ ∈ W such that κ ≥ ℵ_{n+2}, there is a non-reflecting stationary subset of κ ∩ cof(ℵ_n) if and only if F(κ) = 1.

A Snappier Corollary

↓ ロ ト ◆ □ ト ◆ 三 ト ◆ 三 ト ○ Q へ ○
Universität Wien

8/21

A Snappier Corollary

Remark

The successors of singulars present the most difficult cases.

A Snappier Corollary

Remark

The successors of singulars present the most difficult cases.

Corollary (Friedman-L.)

Relative to the consistency of a supercompact cardinal, it is consistent that there is a model in which for all regular $\kappa \geq \aleph_{n+2}$, $SR(\kappa \cap cof(\aleph_n))$ holds if and only if $\varphi(\kappa)$ holds where $\varphi(\kappa)$ could be any of the following:

・ロト ・聞 ト ・ヨト ・ヨト

A Snappier Corollary

Remark

The successors of singulars present the most difficult cases.

Corollary (Friedman-L.)

Relative to the consistency of a supercompact cardinal, it is consistent that there is a model in which for all regular $\kappa \geq \aleph_{n+2}$, $SR(\kappa \cap cof(\aleph_n))$ holds if and only if $\varphi(\kappa)$ holds where $\varphi(\kappa)$ could be any of the following:

Universität Wien

- κ is the successor of a regular cardinal;
- κ is the successor of a singular cardinal;
- κ is inaccessible;
- κ is not inaccessible;

•
$$\kappa = \aleph_{n+17};$$

▶ $\kappa \neq \aleph_{n+17}$.

Further Directions for Stationary Reflection

<ロ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 のへへ Universität Wien

Further Directions for Stationary Reflection

Question

Can we get the same result for $SR(\kappa \cap cof(\aleph_{\omega+1}))$ *?*

Universität Wien

Further Directions for Stationary Reflection

Question

```
Can we get the same result for SR(\kappa \cap cof(\aleph_{\omega+1}))?
```

Conjecture

Probably, but then we need to force approachability "manually" and then the forcing will be even more complicated.

・ロト ・四ト ・ヨト ・ヨト

Further Directions for Stationary Reflection

Question

```
Can we get the same result for SR(\kappa \cap cof(\aleph_{\omega+1}))?
```

Conjecture

Probably, but then we need to force approachability "manually" and then the forcing will be even more complicated.

Question

Suppose that F is a function on a class of regular cardinals $\geq \aleph_2$ to itself such that $F(\kappa)^+ < \kappa$ for all $\kappa \in \text{dom}(F)$. Is it possible to obtain a model such that $SR(\kappa \cap \text{cof}(\theta))$ holds precisely when $F(\kappa) = \theta$?

Universität Wien

・ロト ・聞 ト ・ヨト ・ヨト

Further Directions for Stationary Reflection

Question

```
Can we get the same result for SR(\kappa \cap cof(\aleph_{\omega+1}))?
```

Conjecture

Probably, but then we need to force approachability "manually" and then the forcing will be even more complicated.

Question

Suppose that F is a function on a class of regular cardinals $\geq \aleph_2$ to itself such that $F(\kappa)^+ < \kappa$ for all $\kappa \in \text{dom}(F)$. Is it possible to obtain a model such that $SR(\kappa \cap \text{cof}(\theta))$ holds precisely when $F(\kappa) = \theta$?

・ロト ・聞 ト ・ヨト ・ヨト

Universität Wien

Conjecture

Absolutely not.

Section 3

The Situation with Square (joint w/ Sy-David Friedman and Dima Sinapova)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Maxwell Levine

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Maxwell Levine

Definition

We say that \Box_{κ} holds if there is a sequence $\langle C_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim(\kappa^+)$:

Definition

We say that \Box_{κ} holds if there is a sequence $\langle C_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim(\kappa^+)$:

• C_{α} is a club in α ;

Universität Wien

▲ロ▶ ▲御▶ ▲理▶ ▲理▶

Definition

We say that \Box_{κ} holds if there is a sequence $\langle C_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim(\kappa^+)$:

- C_{α} is a club in α ;
- C_{α} has order-type $\leq \kappa$;

▲ロ▶ ▲御▶ ▲理▶ ▲理▶

Definition

We say that \Box_{κ} holds if there is a sequence $\langle C_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim(\kappa^+)$:

- C_{α} is a club in α ;
- C_{α} has order-type $\leq \kappa$;
- $\blacktriangleright \ \forall \beta \in \lim C_{\alpha}, \ C_{\alpha} \cap \beta = C_{\beta}.$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Definition

We say that \Box_{κ} holds if there is a sequence $\langle C_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim(\kappa^+)$:

- C_{α} is a club in α ;
- C_{α} has order-type $\leq \kappa$;
- ▶ $\forall \beta \in \lim C_{\alpha}, C_{\alpha} \cap \beta = C_{\beta}.$

Fact

Given a \Box_{κ} -sequence, there is no club $D \subseteq \kappa^+$ such that $\forall \alpha \in \lim D, \ D \cap \alpha = C_{\alpha}$. In other words, the sequence has no thread.

・ロト ・四ト ・ヨト ・ヨト

Definition

We say that \Box_{κ} holds if there is a sequence $\langle C_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim(\kappa^+)$:

- C_{α} is a club in α ;
- C_{α} has order-type $\leq \kappa$;
- $\blacktriangleright \ \forall \beta \in \lim C_{\alpha}, \ C_{\alpha} \cap \beta = C_{\beta}.$

Fact

Given a \Box_{κ} -sequence, there is no club $D \subseteq \kappa^+$ such that $\forall \alpha \in \lim D, \ D \cap \alpha = C_{\alpha}$. In other words, the sequence has no thread.

Definition

We say that \Box_{κ}^{*} ("weak square") holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^{+}) \rangle$ such that for all $\alpha \in \lim(\kappa^{+})$:

11/21

◆□> ◆聞> ◆臣> ◆臣> □ 臣

Definition

We say that \Box_{κ} holds if there is a sequence $\langle C_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim(\kappa^+)$:

- C_{α} is a club in α ;
- C_{α} has order-type $\leq \kappa$;
- $\blacktriangleright \ \forall \beta \in \lim C_{\alpha}, \ C_{\alpha} \cap \beta = C_{\beta}.$

Fact

Given a \Box_{κ} -sequence, there is no club $D \subseteq \kappa^+$ such that $\forall \alpha \in \lim D, \ D \cap \alpha = C_{\alpha}$. In other words, the sequence has no thread.

Definition

We say that \Box_{κ}^{*} ("weak square") holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^{+}) \rangle$ such that for all $\alpha \in \lim(\kappa^{+})$:

•
$$|\mathcal{C}_{\alpha}| \leq \kappa;$$

- ▶ for all $C \in C_{\alpha}$, C is a club in α of order-type $\leq \kappa$;
- ▶ for all $C \in C_{\alpha}, \beta \in \lim C, C \cap \beta \in C_{\beta}$.

Maxwell Levine

<ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Definition If $f, g: \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

Maxwell Levine

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If λ is a singular cardinal and $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$ is a sequence of regular cardinals converging to λ , a *scale* on λ is a sequence of functions $\langle f_{\alpha} : \alpha < \lambda^+ \rangle$ such that:

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If λ is a singular cardinal and $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$ is a sequence of regular cardinals converging to λ , a *scale* on λ is a sequence of functions $\langle f_{\alpha} : \alpha < \lambda^+ \rangle$ such that:

• The f_{α} 's are in $\prod_{i < cf \lambda} \lambda_i$;

◆□ > ◆□ > ◆□ > ◆□ > ● □

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If λ is a singular cardinal and $\langle \lambda_i : i < \text{cf } \lambda \rangle$ is a sequence of regular cardinals converging to λ , a *scale* on λ is a sequence of functions $\langle f_{\alpha} : \alpha < \lambda^+ \rangle$ such that:

- The f_{α} 's are in $\prod_{i < cf \lambda} \lambda_i$;
- The f_{α} 's are $<^*$ -increasing;

◆□ > ◆□ > ◆□ > ◆□ > ● □

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If λ is a singular cardinal and $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$ is a sequence of regular cardinals converging to λ , a *scale* on λ is a sequence of functions $\langle f_{\alpha} : \alpha < \lambda^+ \rangle$ such that:

- The f_{α} 's are in $\prod_{i < cf \lambda} \lambda_i$;
- The f_{α} 's are $<^*$ -increasing;
- The sequence is cofinal in the product $\prod_{i < cf \lambda} \lambda_i$ with respect to $<^*$.

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If λ is a singular cardinal and $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$ is a sequence of regular cardinals converging to λ , a *scale* on λ is a sequence of functions $\langle f_{\alpha} : \alpha < \lambda^+ \rangle$ such that:

- The f_{α} 's are in $\prod_{i < cf \lambda} \lambda_i$;
- The f_{α} 's are $<^*$ -increasing;
- The sequence is cofinal in the product $\prod_{i < cf \lambda} \lambda_i$ with respect to $<^*$.

Universität Wien

Theorem (Shelah)

If λ is a singular cardinal then there is a product of regular cardinals $\prod_{i < cf \lambda} \lambda_i$ with $\sup_{i < cf \lambda} \lambda_i = \lambda$ that carries a scale.

<ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Maxwell Levine

Definition Let $\vec{f} = \langle f_{\alpha} : \alpha < \lambda^+ \rangle$ be a scale on a product $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$.

Definition Let $\vec{f} = \langle f_{\alpha} : \alpha < \lambda^+ \rangle$ be a scale on a product $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$.

A function h is an exact upper bound of (f_β : β < α) if g <* h implies that there is some β < α such that g <* f_β.

◆□> ◆聞> ◆臣> ◆臣> □ 臣

Definition Let $\vec{f} = \langle f_{\alpha} : \alpha < \lambda^+ \rangle$ be a scale on a product $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$.

- A function h is an exact upper bound of (f_β : β < α) if g <* h implies that there is some β < α such that g <* f_β.
- We say that α is a good point if (f_β : β < α) has an exact upper bound h such that cf(h(i)) = cf(α) for large i.</p>

< □ > < @ > < 注 > < 注 > □ ≥

Definition Let $\vec{f} = \langle f_{\alpha} : \alpha < \lambda^+ \rangle$ be a scale on a product $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$.

- A function h is an exact upper bound of (f_β : β < α) if g <* h implies that there is some β < α such that g <* f_β.
- We say that α is a good point if (f_β : β < α) has an exact upper bound h such that cf(h(i)) = cf(α) for large i.
- We say that \vec{f} is *good scale* if there are club-many good points in λ^+ of cofinality > cf λ .

Definition Let $\vec{f} = \langle f_{\alpha} : \alpha < \lambda^+ \rangle$ be a scale on a product $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$.

- A function h is an exact upper bound of (f_β : β < α) if g <* h implies that there is some β < α such that g <* f_β.
- We say that α is a good point if (f_β : β < α) has an exact upper bound h such that cf(h(i)) = cf(α) for large i.
- We say that \vec{f} is *good scale* if there are club-many good points in λ^+ of cofinality > cf λ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Universität Wien

Fact

If λ is singular, then \Box_{λ}^* implies that all scales on λ are good.

Definition Let $\vec{f} = \langle f_{\alpha} : \alpha < \lambda^+ \rangle$ be a scale on a product $\langle \lambda_i : i < \operatorname{cf} \lambda \rangle$.

- A function h is an exact upper bound of (f_β : β < α) if g <* h implies that there is some β < α such that g <* f_β.
- We say that α is a good point if (f_β : β < α) has an exact upper bound h such that cf(h(i)) = cf(α) for large i.
- We say that \vec{f} is *good scale* if there are club-many good points in λ^+ of cofinality > cf λ .

Fact

If λ is singular, then \Box_{λ}^* implies that all scales on λ are good.

Fact

If κ is supercompact and cf $\lambda < \kappa < \lambda$, then every scale on λ is bad.

Maxwell Levine

Theorem (Cummings, Foreman, and Magidor / Krueger) Assuming the consistency of a supercompact cardinal, there is a model where \Box_{\aleph_n} holds for all $n < \omega$ and:

Maxwell Levine

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Cummings, Foreman, and Magidor / Krueger) Assuming the consistency of a supercompact cardinal, there is a model

where \Box_{\aleph_n} holds for all $n < \omega$ and:

CFM $\square_{\aleph_{\omega}}$ fails.

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Cummings, Foreman, and Magidor / Krueger) Assuming the consistency of a supercompact cardinal, there is a model where \Box_{\aleph_n} holds for all $n < \omega$ and:

- CFM $\square_{\aleph_{\omega}}$ fails.
 - $\mathsf{K} \ \ \Box^*_{\aleph_{\omega}} \ \text{fails, i.e. there is no } \aleph_{\omega+1} \text{-special Aronszajn tree. In fact, all scales on } \aleph_{\omega} \ \text{are bad.}$

A Weak Non-Compactness Result

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A Weak Non-Compactness Result

Theorem (Friedman, L., Sinapova)

Assuming the consistency of a supercompact cardinal, there is a model in which:

• λ is singular of uncountable cofinality;

(ロ) (部) (目) (日) (日)

Universität Wien

A Weak Non-Compactness Result

Theorem (Friedman, L., Sinapova)

Assuming the consistency of a supercompact cardinal, there is a model in which:

- λ is singular of uncountable cofinality;
- there is a nonstationary set $A \subset \lambda$ such that \Box_{δ} holds for all $\delta \in A$;

Universität Wien

A Weak Non-Compactness Result

Theorem (Friedman, L., Sinapova)

Assuming the consistency of a supercompact cardinal, there is a model in which:

- λ is singular of uncountable cofinality;
- there is a nonstationary set $A \subset \lambda$ such that \Box_{δ} holds for all $\delta \in A$;

 \blacktriangleright \Box_{λ} fails;

A Weak Non-Compactness Result

Theorem (Friedman, L., Sinapova)

Assuming the consistency of a supercompact cardinal, there is a model in which:

- λ is singular of uncountable cofinality;
- there is a nonstationary set $A \subset \lambda$ such that \Box_{δ} holds for all $\delta \in A$;
- \Box_{λ} fails;
- more precisely, there is a bad scale on λ .

Proof of the Weak Non-Compactness Result

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Maxwell Levine

 Start with a κ that is indestructibly supercompact under κ-directed-closed forcings.

- Start with a κ that is indestructibly supercompact under κ-directed-closed forcings.
- ▶ There is a standard forcing S_{δ} for adding a \Box_{δ} -sequence. Force with a product $S := \prod_{\delta \in A} S_{\delta}$ where $A \subset \lambda \setminus \kappa$ is non-stationary. S is cofinality-preserving.

◆□> ◆聞> ◆臣> ◆臣> □ 臣

- Start with a κ that is indestructibly supercompact under κ-directed-closed forcings.
- ▶ There is a standard forcing \mathbb{S}_{δ} for adding a \Box_{δ} -sequence. Force with a product $\mathbb{S} := \prod_{\delta \in A} \mathbb{S}_{\delta}$ where $A \subset \lambda \setminus \kappa$ is non-stationary. \mathbb{S} is cofinality-preserving.
- ► There is also a standard forcing $\mathbb{T}_{\delta,\ell}$ with $\ell \leq \delta$ regular defined in an extension $V[\mathbb{S}_{\delta}]$ such that $\mathbb{S}_{\delta} * \mathbb{T}_{\delta,\ell}$ is ℓ -directed closed.

- Start with a κ that is indestructibly supercompact under κ-directed-closed forcings.
- ▶ There is a standard forcing \mathbb{S}_{δ} for adding a \Box_{δ} -sequence. Force with a product $\mathbb{S} := \prod_{\delta \in A} \mathbb{S}_{\delta}$ where $A \subset \lambda \setminus \kappa$ is non-stationary. \mathbb{S} is cofinality-preserving.
- ► There is also a standard forcing $\mathbb{T}_{\delta,\ell}$ with $\ell \leq \delta$ regular defined in an extension $V[\mathbb{S}_{\delta}]$ such that $\mathbb{S}_{\delta} * \mathbb{T}_{\delta,\ell}$ is ℓ -directed closed.
- A is avoided by a club $\langle \lambda_{\xi} : \xi < \operatorname{cf} \lambda \rangle$. There is a function F with domain A such that for all $\delta \in A$, $F(\delta)$ is a regular cardinal $\leq \delta$ and such that $F(\delta) \geq \lambda_{\xi}^+$ if $\delta \in A \setminus \lambda_{\xi}^+$.

< □ > < @ > < 注 > < 注 > ... 注

- Start with a κ that is indestructibly supercompact under κ-directed-closed forcings.
- ▶ There is a standard forcing S_{δ} for adding a \Box_{δ} -sequence. Force with a product $S := \prod_{\delta \in A} S_{\delta}$ where $A \subset \lambda \setminus \kappa$ is non-stationary. S is cofinality-preserving.
- ► There is also a standard forcing $\mathbb{T}_{\delta,\ell}$ with $\ell \leq \delta$ regular defined in an extension $V[\mathbb{S}_{\delta}]$ such that $\mathbb{S}_{\delta} * \mathbb{T}_{\delta,\ell}$ is ℓ -directed closed.
- A is avoided by a club $\langle \lambda_{\xi} : \xi < \operatorname{cf} \lambda \rangle$. There is a function F with domain A such that for all $\delta \in A$, $F(\delta)$ is a regular cardinal $\leq \delta$ and such that $F(\delta) \geq \lambda_{\xi}^+$ if $\delta \in A \setminus \lambda_{\xi}^+$.
- Use this idea to (carefully) embed S into a forcing Q which is κ-directed closed and which factors as product of a λ_ξ-sized forcing with a λ⁺_ξ-distributive forcing for all ξ < cf λ, which implies that it preserves λ⁺.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

- Start with a κ that is indestructibly supercompact under κ-directed-closed forcings.
- ▶ There is a standard forcing S_{δ} for adding a \Box_{δ} -sequence. Force with a product $S := \prod_{\delta \in A} S_{\delta}$ where $A \subset \lambda \setminus \kappa$ is non-stationary. S is cofinality-preserving.
- ► There is also a standard forcing $\mathbb{T}_{\delta,\ell}$ with $\ell \leq \delta$ regular defined in an extension $V[\mathbb{S}_{\delta}]$ such that $\mathbb{S}_{\delta} * \mathbb{T}_{\delta,\ell}$ is ℓ -directed closed.
- A is avoided by a club $\langle \lambda_{\xi} : \xi < \operatorname{cf} \lambda \rangle$. There is a function F with domain A such that for all $\delta \in A$, $F(\delta)$ is a regular cardinal $\leq \delta$ and such that $F(\delta) \geq \lambda_{\xi}^+$ if $\delta \in A \setminus \lambda_{\xi}^+$.
- Use this idea to (carefully) embed S into a forcing Q which is κ-directed closed and which factors as product of a λ_ξ-sized forcing with a λ⁺_ξ-distributive forcing for all ξ < cf λ, which implies that it preserves λ⁺.
- κ remains supercompact in $V[\mathbb{Q}]$, which means that every scale on λ^+ is bad. Because \mathbb{Q}/\mathbb{S} preserves λ^+ , this implies that there must have been a bad scale in $V[\mathbb{S}]$, hence \Box_{λ} fails in $V[\mathbb{S}]$.

Weak Silver's Theorem for Square

Theorem (Friedman, L., Sinapova)

Suppose:

• λ is a singular strong limit cardinal of uncountable cofinality μ ;

Weak Silver's Theorem for Square

Theorem (Friedman, L., Sinapova)

Suppose:

- λ is a singular strong limit cardinal of uncountable cofinality μ ;
- \Box_{δ} holds for stationarily-many $\delta < \lambda$;

Universität Wien

・ロト ・四ト ・ヨト ・ヨト

Weak Silver's Theorem for Square

Theorem (Friedman, L., Sinapova)

Suppose:

- λ is a singular strong limit cardinal of uncountable cofinality μ ;
- \Box_{δ} holds for stationarily-many $\delta < \lambda$;
- every scale on λ is good.

Weak Silver's Theorem for Square

Theorem (Friedman, L., Sinapova)

Suppose:

- λ is a singular strong limit cardinal of uncountable cofinality μ ;
- \Box_{δ} holds for stationarily-many $\delta < \lambda$;
- every scale on λ is good.

Then there is a partial \Box_{λ} -sequence on $\lambda^+ \cap \operatorname{cof}(> \mu)$,

Weak Silver's Theorem for Square

Theorem (Friedman, L., Sinapova)

Suppose:

- λ is a singular strong limit cardinal of uncountable cofinality μ ;
- \Box_{δ} holds for stationarily-many $\delta < \lambda$;
- every scale on \(\lambda\) is good.

Then there is a partial \Box_{λ} -sequence on $\lambda^{+} \cap cof(> \mu)$, i.e. there is some $Z \supset lim(\lambda^{+}) \cap cof(> \mu)$ and a sequence $\langle C_{\alpha} : \alpha \in Z \rangle$ such that for all $\alpha \in Z$:

- $C_{\alpha} \subset \alpha$ is a club in α ;
- the order-type of C_{α} is $< \lambda$;
- for all $\beta \in \lim C_{\alpha}$, $\beta \in S$ and $C_{\alpha} \cap \beta = C_{\beta}$.

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□ → < □ → < □ → < Ξ → < Ξ → Ξ の Q へ Universität Wien

Maxwell Levine

• We have a singular λ with cofinality $\mu > \omega$ such that $\{\delta < \lambda : \Box_{\delta} \text{ holds}\}$ is stationary. Let $\langle \lambda_i : i < \mu \rangle$ be a club in λ . Then $S := \{i < \mu : \Box_{\lambda_i} \text{ holds}\}$ is stationary in μ .

- We have a singular λ with cofinality $\mu > \omega$ such that $\{\delta < \lambda : \Box_{\delta} \text{ holds}\}$ is stationary. Let $\langle \lambda_i : i < \mu \rangle$ be a club in λ . Then $S := \{i < \mu : \Box_{\lambda_i} \text{ holds}\}$ is stationary in μ .
- Using the fact that ∏_{i∈S} λ⁺_i carries a good scale, we can argue that there is a *continuous* good scale *f*. Namely, a scale ⟨f_α : α < λ⁺⟩ such that:
 - If cf $\alpha < \mu$ and $A \subset \alpha$ is unbounded, then $[i \mapsto \sup_{\beta \in A} f_{\beta}(i)] =^{*} f_{\alpha}$.

Universität Wien

If cf α > μ, then for all unbounded A ⊂ α, there is some A' ⊂ A unbounded such that [i → sup_{β∈A'} f_β(i)] =^{*} f_α.

- ▶ We have a singular λ with cofinality $\mu > \omega$ such that $\{\delta < \lambda : \Box_{\delta} \text{ holds}\}$ is stationary. Let $\langle \lambda_i : i < \mu \rangle$ be a club in λ . Then $S := \{i < \mu : \Box_{\lambda_i} \text{ holds}\}$ is stationary in μ .
- ▶ Using the fact that $\prod_{i \in S} \lambda_i^+$ carries a good scale, we can argue that there is a *continuous* good scale \vec{f} . Namely, a scale $\langle f_\alpha : \alpha < \lambda^+ \rangle$ such that:
 - If cf α < μ and A ⊂ α is unbounded, then [i → sup_{β∈A} f_β(i)] =^{*} f_α.
 - If cf α > μ, then for all unbounded A ⊂ α, there is some A' ⊂ A unbounded such that [i → sup_{β∈A'} f_β(i)] =^{*} f_α.
- ▶ Let $C_i = \langle C_{\xi}^i : \xi < \lambda_i^+ \rangle$ witness \Box_{λ_i} for all $i \in S$. For each $\alpha \in \lambda^+ \cap \operatorname{cof}(> \mu)$, let:

$$X_{lpha} := \langle eta < lpha : \{i < \mu : f_{eta}(i) \in \lim C^i_{f_{lpha}(i)}\} \subset S \setminus j, \text{ some } j
angle.$$

< □ > < @ > < 注 > < 注 > □ ≥

- ▶ We have a singular λ with cofinality $\mu > \omega$ such that $\{\delta < \lambda : \Box_{\delta} \text{ holds}\}$ is stationary. Let $\langle \lambda_i : i < \mu \rangle$ be a club in λ . Then $S := \{i < \mu : \Box_{\lambda_i} \text{ holds}\}$ is stationary in μ .
- ▶ Using the fact that $\prod_{i \in S} \lambda_i^+$ carries a good scale, we can argue that there is a *continuous* good scale \vec{f} . Namely, a scale $\langle f_\alpha : \alpha < \lambda^+ \rangle$ such that:
 - If cf α < μ and A ⊂ α is unbounded, then [i → sup_{β∈A} f_β(i)] =^{*} f_α.
 - If cf α > μ, then for all unbounded A ⊂ α, there is some A' ⊂ A unbounded such that [i → sup_{β∈A'} f_β(i)] =^{*} f_α.
- ▶ Let $C_i = \langle C_{\xi}^i : \xi < \lambda_i^+ \rangle$ witness \Box_{λ_i} for all $i \in S$. For each $\alpha \in \lambda^+ \cap \operatorname{cof}(> \mu)$, let:

$$X_{lpha} := \langle eta < lpha : \{i < \mu : f_{eta}(i) \in \lim C^i_{f_{lpha}(i)}\} \subset S \setminus j, \text{ some } j
angle.$$

Universität Wien

• The X_{α} 's are closed under sequences of length $\neq \mu$.

- ▶ We have a singular λ with cofinality $\mu > \omega$ such that $\{\delta < \lambda : \Box_{\delta} \text{ holds}\}$ is stationary. Let $\langle \lambda_i : i < \mu \rangle$ be a club in λ . Then $S := \{i < \mu : \Box_{\lambda_i} \text{ holds}\}$ is stationary in μ .
- Using the fact that $\prod_{i \in S} \lambda_i^+$ carries a good scale, we can argue that there is a *continuous* good scale \vec{f} . Namely, a scale $\langle f_\alpha : \alpha < \lambda^+ \rangle$ such that:
 - If cf α < μ and A ⊂ α is unbounded, then [i → sup_{β∈A} f_β(i)] =^{*} f_α.
 - If cf α > μ, then for all unbounded A ⊂ α, there is some A' ⊂ A unbounded such that [i → sup_{β∈A'} f_β(i)] =^{*} f_α.
- ▶ Let $C_i = \langle C_{\xi}^i : \xi < \lambda_i^+ \rangle$ witness \Box_{λ_i} for all $i \in S$. For each $\alpha \in \lambda^+ \cap \operatorname{cof}(> \mu)$, let:

$$X_{lpha} := \langle eta < lpha : \{i < \mu : f_{eta}(i) \in \lim C^i_{f_{lpha}(i)}\} \subset S \setminus j, \text{ some } j
angle.$$

< □ > < @ > < 注 > < 注 > □ ≥

- The X_{α} 's are closed under sequences of length $\neq \mu$.
- C_{α} will be the closure of X_{α} in α .

Proof of WSTfS: Verifying the Properties of Partial Square • $X_{\alpha} := \langle \beta < \alpha : \{i < \mu : f_{\beta}(i) \in \lim C^{i}_{f_{\alpha}(i)}\} \subset S \setminus j$, some $j \rangle$

Proof of WSTfS: Verifying the Properties of Partial Square

- $X_{\alpha} := \langle \beta < \alpha : \{i < \mu : f_{\beta}(i) \in \lim C^{i}_{f_{\alpha}(i)}\} \subset S \setminus j, \text{ some } j \rangle$
- Coherence of the X_{α} 's follows (with an argument) from closure.

Proof of WSTfS: Verifying the Properties of Partial Square

- $\blacktriangleright X_{\alpha} := \langle \beta < \alpha : \{i < \mu : f_{\beta}(i) \in \lim C^{i}_{f_{\alpha}(i)}\} \subset S \setminus j, \text{ some } j \rangle$
- Coherence of the X_{α} 's follows (with an argument) from closure.
- ▶ Unboundedness of the X_{α} 's follows from an interleaving argument: We define $\langle \gamma_n : n < \omega \rangle \subset \alpha$, $\langle g_n : n < \omega \rangle \subset \prod_{i < \mu} \lambda_i^+$, $\langle j_n : n < \omega \rangle \subset \mu$ such that given γ_n , $g_{n+1}(i) = \min C^i_{f_{\alpha}(i)} \setminus f_{\gamma_n}(i)$ and $g <^* f_{\gamma_{n+1}}$ (using the exact upper bound property). Then if $\gamma^* = \sup_{n < \omega} \gamma_n$ and $j^* = \sup_{n < \omega} j_n$, j^* witnesses that $\gamma^* \in X_{\alpha}$.

Proof of WSTfS: Verifying the Properties of Partial Square

$$\blacktriangleright X_{\alpha} := \langle \beta < \alpha : \{i < \mu : f_{\beta}(i) \in \lim C^{i}_{f_{\alpha}(i)}\} \subset S \setminus j, \text{ some } j \rangle$$

- Coherence of the X_{α} 's follows (with an argument) from closure.
- Unboundedness of the X_{α} 's follows from an interleaving argument: We define $\langle \gamma_n : n < \omega \rangle \subset \alpha$, $\langle g_n : n < \omega \rangle \subset \prod_{i < \mu} \lambda_i^+$, $\langle j_n : n < \omega \rangle \subset \mu$ such that given γ_n , $g_{n+1}(i) = \min C_{f_{\alpha}(i)}^i \setminus f_{\gamma_n}(i)$ and $g <^* f_{\gamma_{n+1}}$ (using the exact upper bound property). Then if $\gamma^* = \sup_{n < \omega} \gamma_n$ and $j^* = \sup_{n < \omega} j_n$, j^* witnesses that $\gamma^* \in X_{\alpha}$.
- To show that the X_α's have order-type < λ: Assume without loss of generality that the square sequences ⟨Cⁱ_ξ : i < μ⟩ were defined so that ot Cⁱ_ξ < λ_i for all ξ < λ⁺_i, i < μ. For every i ∈ lim S, there is some j < i such that ot Cⁱ_{f_α(i)} < λ_j. So there is a stationary T ⊆ S and some j such that for all i ∈ T, ot Cⁱ_{f_α(i)} < λ_j. If β ∈ X_α, let g_β(i) = ot Cⁱ_{f_α(i)} ∩ f_β(i) for all i such that f_β(i) ∈ Cⁱ_{f_α(i)} and 0 otherwise. If β, β' ∈ X_α and β < β', then g_β and g_{β'} are distinct because f'_β eventually dominates f_β. Furthermore, {g_β : β ∈ X_α} has size λ^{cf λ}_β < λ since we assumed λ is a strong limit, which shows that X_β has size less than λ.

Maxwell Levine

Conjectures Not Necessarily Believed by Collaborators

Maxwell Levine

Conjectures Not Necessarily Believed by Collaborators

Conjecture

Silver's Theorem for Square is false. Rather, it is consistent up to large cardinals that $\Box_{\aleph_{\delta}}$ holds for all $\delta < \omega_1$, while $\Box_{\aleph_{\omega_1}}$ fails.

・ロト ・四ト ・ヨト ・ヨト

Conjectures Not Necessarily Believed by Collaborators

Conjecture

Silver's Theorem for Square is false. Rather, it is consistent up to large cardinals that $\Box_{\aleph_{\delta}}$ holds for all $\delta < \omega_1$, while $\Box_{\aleph_{\omega_1}}$ fails.

Conjecture

Some strong-ish form of Silver's Theorem for Weak Square is true. If λ is a singular strong limit of uncountable cofinality and \Box_{δ}^* holds for all $\delta < \lambda$, then \Box_{λ}^* holds as well.

・ロト ・四ト ・ヨト ・ヨト

Děkuji!

Maxwell Levine