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Compactness Properties at Singular Cardinals

Definition
A cardinal κ is singular if there is some λ < κ and some function
f : λ→ κ unbounded in κ. The smallest such λ is the cofinality of κ and
is denoted cf κ.

I ℵ0, ℵ1 are not singular, nor are inaccessible cardinals.

I ℵω, ℵω2 , ℵω1 are singular.

I When we talk about singulars, we are often interested in their
successors, e.g. ℵω+1.

I A property exemplifies compactness if approximations of a possible
object imply the existence of the object, e.g. the tree property.

I Compact properties tend to follow from large cardinals, either
directly or consistency-wise.

I A property is non-compact if you have approximations of something
that cannot exist, e.g. an Aronszajn tree or �κ.

I Non-compactness is a key property of L and other inner models.
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Compact Behavior of Singular Cardinals

Theorem (Easton)
The continuum function κ 7→ 2κ on regular cardinals is constrained only
by:

I λ ≤ κ =⇒ 2λ ≤ 2κ (monotonicity)

I cf(2κ) > κ (König’s Theorem).

Theorem (Silver)
GCH cannot fail for the first time at a singular of uncountable cofinality.

Theorem (Magidor)
Relative to a supercompact cardinal, it is consistent that GCH holds
below ℵω but 2ℵω > ℵω+1.

Theorem (Shelah)
If ℵω is a strong limit then 2ℵω < ℵω4 .
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Section 2

The Non-Compactness of Stationary Reflection
(joint w/ Sy-David Friedman)

Maxwell Levine Universität Wien



The Non-Compactness of Stationary Reflection (joint w/ Sy-David Friedman) 6/21

Defining Stationary Reflection

Definition
If κ is a cardinal and S ⊆ κ a stationary set, then S reflects at α if
cf(α) > ω and S ∩ α is stationary. S reflects if it reflects at some α < κ.

Definition
The stationary reflection property SR(S) holds if every stationary subset
of S reflects.

Examples

Jensen In L, SR(κ) holds if any only if κ is weakly compact.

Harr.-Sh. Con(SR(ℵ2 ∩ cof(ω))) ⇐⇒ Con(∃ a Mahlo cardinal).

Sargsyan Con(ℵω a strong limit ∧ SR(ℵω+1)) =⇒
Con(∃ a Woodin cardinal with a strong cardinal below it).

Solovay? κ supercompact =⇒ SR(λ ∩ cof(< κ)) for all regular λ ≥ κ.
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“Eastonizing” Stationary Reflection for Fixed Cofinality

Proposition

I SR(κ ∩ cof(ℵn)) holds vacuously if κ ≤ ℵn;

I SR(ℵn+1 ∩ cof(ℵn)) fails;

I SR(λ ∩ cof(ℵn)) ⇐⇒ SR(cf λ ∩ cof(ℵn)).

Theorem (Friedman-L.)
Suppose χ is a supercompact cardinal in V such that GCH holds above
χ. Let F be a 2-valued function on the class of regular cardinals ≥ χ.
Then there is a forcing extension W ⊃ V in which:

I χ = ℵn+2;

I cofinalities and GCH are preserved above χ;

I for all regular κ ∈W such that κ ≥ ℵn+2, there is a non-reflecting
stationary subset of κ ∩ cof(ℵn) if and only if F (κ) = 1.
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A Snappier Corollary

Remark
The successors of singulars present the most difficult cases.

Corollary (Friedman-L.)
Relative to the consistency of a supercompact cardinal, it is consistent
that there is a model in which for all regular κ ≥ ℵn+2, SR(κ ∩ cof(ℵn))
holds if and only if ϕ(κ) holds where ϕ(κ) could be any of the following:

I κ is the successor of a regular cardinal;

I κ is the successor of a singular cardinal;

I κ is inaccessible;

I κ is not inaccessible;

I κ = ℵn+17;

I κ 6= ℵn+17.
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Further Directions for Stationary Reflection

Question
Can we get the same result for SR(κ ∩ cof(ℵω+1))?

Conjecture
Probably, but then we need to force approachability “manually” and then
the forcing will be even more complicated.

Question
Suppose that F is a function on a class of regular cardinals ≥ ℵ2 to itself
such that F (κ)+ < κ for all κ ∈ dom(F ). Is it possible to obtain a model
such that SR(κ ∩ cof(θ)) holds precisely when F (κ) = θ?

Conjecture
Absolutely not.
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Section 3

The Situation with Square (joint w/ Sy-David
Friedman and Dima Sinapova)
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�κ and �∗κ

Definition
We say that �κ holds if there is a sequence 〈Cα : α ∈ lim(κ+)〉 such that
for all α ∈ lim(κ+):

I Cα is a club in α;

I Cα has order-type ≤ κ;

I ∀β ∈ lim Cα, Cα ∩ β = Cβ .

Fact
Given a �κ-sequence, there is no club D ⊆ κ+ such that
∀α ∈ lim D, D ∩ α = Cα. In other words, the sequence has no thread.

Definition
We say that �∗κ (“weak square”) holds if there is a sequence
〈Cα : α ∈ lim(κ+)〉 such that for all α ∈ lim(κ+):

I |Cα| ≤ κ;

I for all C ∈ Cα, C is a club in α of order-type ≤ κ;

I for all C ∈ Cα, β ∈ lim C , C ∩ β ∈ Cβ .
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Scales

Definition
If f , g : τ 7→ ON, then f <∗ g if there is a j < τ such that
i ≥ j =⇒ f (i) < g(i).

If λ is a singular cardinal and 〈λi : i < cf λ〉 is a sequence of regular
cardinals converging to λ, a scale on λ is a sequence of functions
〈fα : α < λ+〉 such that:

I The fα’s are in
∏

i<cf λ λi ;

I The fα’s are <∗-increasing;

I The sequence is cofinal in the product
∏

i<cf λ λi with respect to <∗.

Theorem (Shelah)
If λ is a singular cardinal then there is a product of regular cardinals∏

i<cf λ λi with supi<cf λ λi = λ that carries a scale.
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Connections Between Squares and Scales

Definition
Let ~f = 〈fα : α < λ+〉 be a scale on a product 〈λi : i < cf λ〉.

I A function h is an exact upper bound of 〈fβ : β < α〉 if g <∗ h
implies that there is some β < α such that g <∗ fβ .

I We say that α is a good point if 〈fβ : β < α〉 has an exact upper
bound h such that cf(h(i)) = cf(α) for large i .

I We say that ~f is good scale if there are club-many good points in
λ+ of cofinality > cf λ.

Fact
If λ is singular, then �∗λ implies that all scales on λ are good.

Fact
If κ is supercompact and cf λ < κ < λ, then every scale on λ is bad.
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Non-Compactness of �κ at ℵω

Theorem (Cummings, Foreman, and Magidor / Krueger)
Assuming the consistency of a supercompact cardinal, there is a model
where �ℵn holds for all n < ω and:

CFM �ℵω fails.

K �∗ℵω fails, i.e. there is no ℵω+1-special Aronszajn tree. In fact, all
scales on ℵω are bad.
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A Weak Non-Compactness Result

Theorem (Friedman, L., Sinapova)
Assuming the consistency of a supercompact cardinal, there is a model in
which:

I λ is singular of uncountable cofinality;

I there is a nonstationary set A ⊂ λ such that �δ holds for all δ ∈ A;

I �λ fails;

I more precisely, there is a bad scale on λ.
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Proof of the Weak Non-Compactness Result

I Start with a κ that is indestructibly supercompact under
κ-directed-closed forcings.

I There is a standard forcing Sδ for adding a �δ-sequence. Force with
a product S :=

∏
δ∈A Sδ where A ⊂ λ \ κ is non-stationary. S is

cofinality-preserving.
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Weak Silver’s Theorem for Square

Theorem (Friedman, L., Sinapova)
Suppose:

I λ is a singular strong limit cardinal of uncountable cofinality µ;

I �δ holds for stationarily-many δ < λ;

I every scale on λ is good.

Then there is a partial �λ-sequence on λ+ ∩ cof(> µ),
i.e. there is some Z ⊃ lim(λ+) ∩ cof(> µ) and a sequence 〈Cα : α ∈ Z 〉
such that for all α ∈ Z :

I Cα ⊂ α is a club in α;

I the order-type of Cα is < λ;

I for all β ∈ lim Cα, β ∈ S and Cα ∩ β = Cβ .
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Proof of WSTfS: Defining the Partial Square

I We have a singular λ with cofinality µ > ω such that
{δ < λ : �δ holds} is stationary. Let 〈λi : i < µ〉 be a club in λ.
Then S := {i < µ : �λi holds} is stationary in µ.

I Using the fact that
∏

i∈S λ
+
i carries a good scale, we can argue that

there is a continuous good scale ~f . Namely, a scale 〈fα : α < λ+〉
such that:

I If cf α < µ and A ⊂ α is unbounded, then [i 7→ supβ∈A fβ(i)] =
∗ fα.

I If cf α > µ, then for all unbounded A ⊂ α, there is some A′ ⊂ A
unbounded such that [i 7→ supβ∈A′ fβ(i)] =

∗ fα.

I Let Ci = 〈C i
ξ : ξ < λ+

i 〉 witness �λi for all i ∈ S . For each

α ∈ λ+ ∩ cof(> µ), let:

Xα := 〈β < α : {i < µ : fβ(i) ∈ lim C i
fα(i)} ⊂ S \ j , some j〉.

I The Xα’s are closed under sequences of length 6= µ.

I Cα will be the closure of Xα in α.
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Proof of WSTfS: Verifying the Properties of Partial Square
I Xα := 〈β < α : {i < µ : fβ(i) ∈ lim C i

fα(i)} ⊂ S \ j , some j〉

I Coherence of the Xα’s follows (with an argument) from closure.
I Unboundedness of the Xα’s follows from an interleaving argument:

We define 〈γn : n < ω〉 ⊂ α, 〈gn : n < ω〉 ⊂
∏

i<µ λ
+
i ,

〈jn : n < ω〉 ⊂ µ such that given γn, gn+1(i) = min C i
fα(i) \ fγn(i) and

g <∗ fγn+1 (using the exact upper bound property). Then if
γ∗ = supn<ω γn and j∗ = supn<ω jn, j∗ witnesses that γ∗ ∈ Xα.

I To show that the Xα’s have order-type < λ: Assume without loss of
generality that the square sequences 〈C i

ξ : i < µ〉 were defined so

that ot C i
ξ < λi for all ξ < λ+

i , i < µ. For every i ∈ lim S , there is

some j < i such that ot C i
fα(i) < λj . So there is a stationary T ⊆ S

and some j such that for all i ∈ T , ot C i
fα(i) < λj . If β ∈ Xα, let

gβ(i) = ot C i
fα(i) ∩ fβ(i) for all i such that fβ(i) ∈ C i

fα(i) and 0

otherwise. If β, β′ ∈ Xα and β < β′, then gβ and gβ′ are distinct
because f ′β eventually dominates fβ . Furthermore, {gβ : β ∈ Xα} has

size λcf λ
j < λ since we assumed λ is a strong limit, which shows that

Xβ has size less than λ.
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fα(i) \ fγn(i) and

g <∗ fγn+1 (using the exact upper bound property). Then if
γ∗ = supn<ω γn and j∗ = supn<ω jn, j∗ witnesses that γ∗ ∈ Xα.

I To show that the Xα’s have order-type < λ: Assume without loss of
generality that the square sequences 〈C i

ξ : i < µ〉 were defined so

that ot C i
ξ < λi for all ξ < λ+

i , i < µ. For every i ∈ lim S , there is

some j < i such that ot C i
fα(i) < λj . So there is a stationary T ⊆ S

and some j such that for all i ∈ T , ot C i
fα(i) < λj . If β ∈ Xα, let

gβ(i) = ot C i
fα(i) ∩ fβ(i) for all i such that fβ(i) ∈ C i

fα(i) and 0

otherwise. If β, β′ ∈ Xα and β < β′, then gβ and gβ′ are distinct
because f ′β eventually dominates fβ . Furthermore, {gβ : β ∈ Xα} has

size λcf λ
j < λ since we assumed λ is a strong limit, which shows that

Xβ has size less than λ.

Maxwell Levine Universität Wien



The Situation with Square (joint w/ Sy-David Friedman and Dima Sinapova) 20/21

Conjectures Not Necessarily Believed by Collaborators

Conjecture
Silver’s Theorem for Square is false. Rather, it is consistent up to large
cardinals that �ℵδ holds for all δ < ω1, while �ℵω1

fails.

Conjecture
Some strong-ish form of Silver’s Theorem for Weak Square is true. If λ is
a singular strong limit of uncountable cofinality and �∗δ holds for all
δ < λ, then �∗λ holds as well.
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Děkuji!
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